List decoding of matrix-product codes from nested codes: An application to quasi-cyclic codes
نویسندگان
چکیده
A list decoding algorithm for matrix-product codes is provided when C1, . . . , Cs are nested linear codes and A is a non-singular by columns matrix. We estimate the probability of getting more than one codeword as output when the constituent codes are Reed-Solomon codes. We extend this list decoding algorithm for matrix-product codes with polynomial units, which are quasi-cyclic codes. Furthermore, it allows us to consider unique decoding for matrix-product codes with polynomial units.
منابع مشابه
On Skew Cyclic Codes over a Finite Ring
In this paper, we classify the skew cyclic codes over Fp + vF_p + v^2F_p, where p is a prime number and v^3 = v. Each skew cyclic code is a F_p+vF_p+v^2F_p-submodule of the (F_p+vF_p+v^2F_p)[x;alpha], where v^3 = v and alpha(v) = -v. Also, we give an explicit forms for the generator of these codes. Moreover, an algorithm of encoding and decoding for these codes is presented.
متن کاملPractical Encoder and Decoder for Power Constrained QC-LDPC lattices
LDPC lattices were the first family of lattices that equipped with iterative decoding algorithms under which they perform very well in high dimensions. In this paper, we introduce quasi cyclic low density parity check (QC-LDPC) lattices as a special case of LDPC lattices with one binary QC-LDPC code as their underlying code. These lattices are obtained from Construction A of lattices providing ...
متن کاملQuasi-cyclic LDPC codes from difference families
We consider in this paper regular and nearly regular quasi-cyclic low-density paritycheck (LDPC) codes, derived from families of difference sets. The codes have girth at least 6, and sparse parity-check matrices. They are designed to perform well when iteratively decoded with the sum-product decoding algorithm and to allow low complexity encoding.
متن کاملCodes Closed under Arbitrary Abelian Group of Permutations
Algebraic structure of codes over Fq , closed under arbitrary abelian group G of permutations with exponent relatively prime to q, called G-invariant codes, is investigated using a transform domain approach. In particular, this general approach unveils algebraic structure of quasicyclic codes, abelian codes, cyclic codes, and quasi-abelian codes with restriction on G to appropriate special case...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Adv. in Math. of Comm.
دوره 6 شماره
صفحات -
تاریخ انتشار 2012